Advances in Primary and Adjuvant RT for Prostate Cancer: Clinical Trials, Image-Guided Radiotherapy and Brachytherapy

Richard K. Valicenti, MD, MA Department of Radiation Oncology Thomas Jefferson University Philadelphia, PA

Topics and Trends

- Risk groups and therapy selection
- Adjuvant RT: Clinical trials
- Trends in image-guided RT/Proton RT
- Brachytherapy results: Seeds and HDR

NCCN Risk Groupings

• Low risk: -T1-T2a, Gleason < 6, *and* PSA < 10 ng/mlIntermediate: -T2b-T2c, Gleason = 7, or $PSA \ 10 - 20 \ ng/ml$ • High: -T3-4, Gleason 8 – 10, or PSA > 20

National Comprehensive Cancer Network (NCCN)® Clinical Practice Guidelines in Oncology—v.1.2005.

Risk Grouping and Treatment Options

See Principles of Radiation Therapy (PROS

See Principles of Surgery (PROS-D).

PSee Principles of Hormonal Therapy (PROS-E).
^hSee Systemic Therapy (PROS-7).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Types of Radiation Treatment for Prostate Cancer

- External beam radiotherapy (EBRT)
 - Early adjuvant post-prostatectomy EBRT
 - Intensity-modulated radiotherapy (IMRT)
 - Daily prostate localization/cross-sectional imaging
- Brachytherapy
 - Permanent seed implants (I-125/Pd-103)
 - As monotherapy or with EBRT
 - New seed technology/intraoperative planning
 - Temporary high-dose-rate (HDR) after loading implants
 - With EBRT

I-125=iodine 125; Pd-103=palladium 103

Adjuvant and Salvage Radiotherapy Following RRP

- Adjuvant—given after the primary therapy (RT after RRP)
- Salvage—given after the primary therapy has failed

Post-op RT: Summary of The Randomized Trials

Group	n	Dose(Gy)	FFBF	P value
SWOG 8794/	211	None	44%(5yr)	<0.001
RTOG 9019	208	60-64	71%(5yr)	
EORTC	503	None	53%(5yr)	<0.0001
2291	502	60	74%(5yr)	
ARO 96-02	153	None	60%(4yr)	<0.0001
	108	60	81%(4yr)	

Salvage and Adjuvant RT After RRP: Indications and Evidence

1. Biopsy proven local recurrence	+++
2. Positive margins	+++
3.Rising PSA	++
4. Positive seminal vesicles	++
5. Extraprostatic extension (EPE)	+
6. High-grade cancer	-

🚰 Sloan-Kettering - Prostate Nomogram - Microsoft Internet Explorer provided by UM Hospitals and... 🔳 🔲 💌

Image Guided Radiation Therapy

- External Radiotherapy
 - Intensity Modulated Radiation Therapy (IMRT)
 - Proton Radiotherapy/Heavy Ions
- Imaging Methods during Radiotherapy
 - Electronic Portal Imaging
 - kV Imaging
 - KV and MVCT
 - Ultrasound

PSA Relapse-free Survival According to Dose for Favorable Risk Prostate Cancer Patients

Zelefsky M, et al. IJROBP. 2003:57(2 Suppl):S149-50. Reprinted with permission from Elsevier.

High-dose Intensity Modulated Radiation Therapy with Daily EPID Localization

Decreased Side Effects at Higher Radiation Dose with IMRT

Zelefsky et al. J Urol 166: 876-881; 2001.

Prostate Localization: Hitting a Moving Target

Herman MG et al., IJROBP 57(4):1131:2003

On Board Imaging (OBI) with kV X-rays: 'Cone Beam CT'

*kV CT scan on the table Dose: 1.4 cGy

*Groh BA. et al., Med Phys 29(6): 967: 2002 Images: Varian Corp. and Henry Ford Hosp.

kV digital imaging mounted at 90 degrees to the beam.

Improved Aiming for IMRT: Implantable Wireless Transponder for Prostate Tracking

Wireless Transponders

Calypso[®] 4D Localization System and Beacon[®] Transponder

- · Wireless 15 G, permanent implant
- · Contains a AC magnetic resonant circuit
- Three, uniquely identifiable, time multiplexed, transponders define treatment isocenter
- No external lead wires or internal power supply
- Hermetically sealed, glass-encapsulated circuitry for permanent implantation
- Remains inactive until energized by system

FDA limits use of this device to prostate treatments only. [©]Calypso Medical Technologies Inc.

Accuracy at 27.4 cm from array

J. Balter, University of Michigan, et al. Demonstration of Accurate Localization and Continuous Tracking of Implantable Wireless Electromagnetic Transponders. ASTRO 2003.

Why Protons?

Cost: \$50 – 200 Million US: 3 Centers open more on the way Worldwide: 22+

...Bragg Peak leads to less exit dose

Yock TI et al. Nat Clin Pract Oncol 1: 97-103

Protons: Phase III Trial CaP

- MGH/Loma Linda 393 pts (1996-99)
- 70.2 Gy vs 79.2 Gy = photons (50.4 Gy) + protons (19.8 vs 28.8 Gy)
- T1a T2b with PSA < 15 and No mets
- No androgen deprivation allowed
- Low risk (58%), Intermediate (33.5%), and High risk (8.5%)
- Median follow-up 5.5 years
- <u>RESULTS</u>: 80.4% bNED vs 61.4%

Zeitman A et al. JAMA 294(10):1233-39; 2005.

Permanent Seed Implants

<u>Advantages</u>

- High intraprostatic dose
- Convenient outpatient treatment as monotherapy
- Excellent long-term results (10+ years)
- Long-term morbidity low in appropriately selected patients
- Disadvantages
 - Difficult technique to master
 - Fewer patients eligible compared to EBRT
 - Acute urinary side effects greater than EBRT

Permanent Seed Implants I-125/Pd-103 Brachytherapy

1. I-125/Pd-103 seeds

Adapted from Davis BJ, et al. Int J Radiat Oncol Biol Phys. 2003 Nov 15;57(4):1174-82.

3. Outpatient implant procedure; TRUS guidance

TRUS=transrectal ultrasound

2. Acquisition of prostate volume by TRUS for planning

The Volume Study - 5 mm Steps

4. Postimplant assessment of implant quality by CT

I-125/Pd-103 Implant ± EBRT bNED by MSKCC Risk Grouping

Blasko JC, et al. Semin Radiat Oncol. 2002 Jan;12(1):81-94. Reprinted with permission from Elsevier.

RTOG 98-05: Prospective HRQOL on Prostate Brachytherapy Patients

- 98 patients treated with I-125 monotherapy from 24 institutions
- Patients with T2a, PSA <10 ng/mL, Gleason ≤6
 - Prospectively evaluated at 3, 6, 9, and 12 months with patient-administered forms
 - FACT-P, Sexual Assessment Questionnaire (SAQ)
 - International Prostate Symptom Score (IPSS)

Lee WR, et al. ASTRO Annual Meeting Proceedings. 2002. Abstract.

RTOG 98-05: Prospective HRQOL on Prostate Brachytherapy Patients

- Results
 - Urinary incontinence (any use of pads)
 - 14% at 6 months
 - <1% at 12 months
 - ED: 73% potent before PB
 - 57% at 1 year
 - 65% unassisted before PB and 36% unassisted at 1 year

Lee WR, et al. ASTRO Annual Meeting Proceedings. 2002. Abstract.

Erectile Function 6 Years After Brachytherapy

		Post-Rx		Overall
Pre-Rx		Unchanged	Sildenafil	Potency
Status	#	Potent	Response	(IIEF ≥11)
Normal	125	50%*	95%	92%
Suboptimal	56	13%	70%	30%

*57% for men <60 years

Merrick GS, et al. Int J Radiat Oncol Biol Phys. 2002 Mar 15;52(4):893-902.

HDR + IMRT vs. HDR MONOTHERAPY FOR EARLY STAGE PROSTATE CANCER : Mark et al., ABS 2007

6 YR PSA DFS

<u>Treatment</u>	<u> #PTS</u>	PSA DFS
HDR +/- IMRT	302	88.4% (267/302)
HDR + IMRT	109	88.1% (96/109)*
HDR	193	88.6% (171/193)*

***p** = **0.6**

Take-home Points

- All modern radiotherapy approaches demonstrate better outcomes and less morbidity than in the past.
 - Dose escalation with image guidance and IMRT
- Technologies driving further improvements
 - Cone beam CT scanning/prostate tracking and positioning/proton radiotherapy
- Data supporting the use of adjuvant and salvage radiotherapy has increased.
 - EORTC, SWOG and ARO trials

Thank You!