

Targeting The Stress-Induced Cytoprotective Chaperone, Clusterin, to Overcome Treatment Resistance in Advanced Prostate Cancer



THE PROSTATE CENTRE AT VANCOUVER GENERAL HOSPITAL

## Martin Gleave MD, FRCSC, FACS

Professor, Department of Urologic Sciences University of British Columbia B.C. Leadership Chair in Prostate Research Director, The Prostate Centre at VGH

#### **Disclosure of Conflicts of Interest**

Patent - OGX-011 Founder - OncoGenex Technologies Consultant - CSO, OncoGenex Technologies

# **Castration Resistance and Prostate Cancer**

- 1. Androgen receptor (AR) related
  - Overamplification (hypersensitive)
  - Mutations (promiscuous)
  - cross-talk TK, PKA, AKT, STAT3 (phosphorylation, co-regulators)
- 2. Adaptation
  - Up-regulation of survival genes (Bcl-2, clusterin, Hsp27, YB-1)
  - Increased alternative GF pathways (her2/neu; IGF-1/IGFBP2&5; IL-6/STAT3)



## High-Throughput Bioprofiling of Hormone-Treated Prostate Cancers to Identify Stress-Induced Targets



PSA (ng/mL)

# Changes in Gene Expression After Castration and During AI Progression



Therapeutic Stress Increases Clusterin Levels in CaP Tumor Models and Human Tissues

#### Transcriptionally activated by

- Hormone withdrawal (a.k.a. TRPM-2)
- Chemotherapies
- Radiotherapy
- Targeted therapies (Herceptin, Velcade, OGX-225, etc)

#### Androgen Ablation in Shionogi Tumors

Days Post-Castration 0 3 7 21 Clusterin

GAPDH



Cancer Research 60; 170, 2000

#### Docetaxel Rx in PC-3

Docetaxel Rx (nM) 0 10 25 50 100 500

Clusterin



Vinculin



TMA profiling for Target Validation



**Post-Hormone-Treated TMA** 

HRPC



6 month NHT+Tax

## SCLU-2: Stress-induced Cytoprotective Chaperone

- 1. Transcriptionally activated by HSF-1, repressed by p53
  - a. Increased by diverse array of therapeutic triggers (HT, CT, RT, velcade, herceptin)
  - b. Increased by cell survival factors like androgen, IGF-1
- 2. Intrinsically disordered and flexible protein
- 3. Potent inhibitors of aggregation of client proteins under stress conditions
- 4. Often associated with neurodegenerative diseases and cancer
- 5. Interact with and inhibit activated Bax; enhances NF-kB transcriptional activity





## **Clusterin: Cytoprotective Mechanisms**

LETTERS

cell biology

### Clusterin inhibits apoptosis by interacting with activated Bax

Honglai Zhang<sup>1</sup>, Jin Koo Kim<sup>1</sup>, Chris A. Edwards<sup>2</sup>, Zhaohui Xu<sup>3</sup>, Russell Taichman<sup>4</sup> and Cun-Yu Wang<sup>1,5</sup>





# sCLU-2 is a COMMD1 and ubiquitin binding partner in cancer cells

1. sClu-2 and COMMD1 co-localize in cytoplasm with a juxtanuclear aggregation



2. sCLU-2 Levels Negatively Correlate with COMMD1 & Ik-B Levels

## Clu transient transfection 0 50 100 250 500 1000 (ng) Clusterin Clusterin Clusterin COMMD1 COMMD1

#### Clu Knockdown increases Levels of COMMD1 & total Ικ-Βα



Zoubeidi et al, 2007

## sCLU-2 Enhances TNF-a induced NF-kB Nuclear Translocation and Transcriptional Activity





#### 2. sClu-2 Knockdown $\downarrow \downarrow$ NF-kB Activity





Zoubeidi et al, 2007

## Clusterin Expression Levels Positively Correlate with NF-κB - regulated Genes



# sClu-2 Enhances COMMD1 and I-κBα Degradation by the Proteasome



# Functional Significance of sCLU-2 Over-expression in Prostate Cancer

• sCLU overexpression is antiapoptotic: confers broad spectrum treatment resistance including hormone, radiation, and chemo-therapy



Cancer Research 60;170, 2000; Cancer Research 60;2547, 2000; Clin Can Res 8:3276-84, 2002

## Inhibition of Clusterin Expression Enhances Activity of Chemotherapy in Prostate Cancer Cells

### CLU ASO (OGX-011) Suppress Clu Levels in PC-3 Cells







**OGX-011** 

#### OGX-011 Chemosensitizes PC-3 Cells to Docetaxel



Docetaxel concentration (nM)

#### OGX-011 Enhances Taxol Activity in PC3 Tumours in vivo



Clin Cancer Res 6:1655, 2000

### CLU ASO (OGX-011) Suppresses sCLU Levels and Chemosensitizes MCF-7 Xenografts to Paclitaxel in vivo

#### **Clusterin is expressed in 65% of Primary Breast Cancers**









So et al, Mol Cancer Ther, 2005

## From Bench to Bedside: Translational Research in Action



## sCLU as a Therapeutic Target: Preclinical Studies For Proof of Principle

## Of Mice and Men

Clusterin: •Stress-induced survival response •confers resistance •knockdown enhances chemo & HT in many tumor models





## **Antisense Clusterin: OGX-011 Product Description**

- Licensed from UBC for development by OncoGenex in collaboration with Isis
  - 2<sup>nd</sup> generation antisense molecule
  - 4-13-4 21-mer MOE gapmer oligonucleotide
- Advantages of 2'MOE analogues
  - Increased potency and resistance to degradation
  - Facilitates more convenient dosing regimen
    - once-weekly infusion
  - J Pharmacol Exp Ther. 298(3):934-40, 2001





## NCIC IND.153: Phase I Pre-Surgery pk/pd Trial of OGX-011 - Tissue Pk data

•25 men with localized CaP treated with 5 weeks of NHT + escalating doses of OGX-011



## **IND.153: Target Regulation Data:** Dose-dependent suppression of clusterin in Regional Lymph Nodes



Chi et al, JNCI. 97:1287-96, 2005

## Clinical Proof-of-Concept: Dose-dependent Decreases in Clusterin Levels in RP Specimens using LCM and Real-Time PCR



Chi et al, J Nat.Canc.Inst. 97:1287-96, 2005

## **Clinical Trial Development with Clusterin ASO (OGX-011)**



# Phase 2 Study in 1<sup>st</sup> Line NSCLC: Treatment Schema

•81 pts with stage IIIB/IV NSCLC treated with gem/cis plus OGX-011

|                                            |                      | Results as of May 24, 2007 |  |
|--------------------------------------------|----------------------|----------------------------|--|
| Median Follow-up                           |                      | 12.7 months                |  |
| Number of Deaths                           |                      | 37/81 (46%)                |  |
| Median Progression-Free Survival (range)   |                      | 4.6 months (0.06-15.6+)    |  |
| Estimated Median Survival                  |                      | 14.1 months                |  |
| Number of Patients Surviving $\geq$ 1 year |                      | <b>25/46 = 54%</b> *       |  |
| Number of Patients Surviving ≥ 18 months   |                      | 8/22 = 36%                 |  |
|                                            |                      |                            |  |
|                                            | Historical Controls* | Phase 1 and 2 (n=81)       |  |
| Median Survival                            | 8.0 – 10.8 months    | 14.1 Months (estimated)    |  |

•Data from five randomized clinical trials using gemcitabine plus platinum-based chemo in 1<sup>st</sup> line NSCLC (1260 patients)

Laskins et al, ASCO, 2007

# NCIC IND.165: Taxotere +/- OGX-011 in First-Line mHRPC

Randomized Open label, multicentre trial comparing docetaxel
+/- OGX-011 in men with mHRPC (PI - K. Chi).

### **PSA Response Rates**

| BEST RESPONSE CRITERIA                 | Arm A<br>(OGX-011 +<br>Docetaxel)<br>N=40 | Arm B<br>(Docetaxel)<br>N=41 | % Change in<br>favor of OGX-<br>011 |
|----------------------------------------|-------------------------------------------|------------------------------|-------------------------------------|
| ≥ 50% PSA Decline at 12 weeks          | 45%                                       | 34%                          | 32%                                 |
| PSA Response (50% decline - confirmed) | 50%                                       | 51%                          | NA                                  |
| ≥ 80% PSA Decline                      | 38%                                       | 22%                          | 73%                                 |
| PSA Progression (PSAWG<br>Criteria)    | 0%                                        | 10%                          | 100%                                |
| PSA Non-Progression/Non-<br>Response   | 45%                                       | 32%                          | 41%                                 |
| Inevaluable                            | 3%                                        | 2%                           | NA                                  |

## NCIC IND.165: Taxotere +/- OGX-011 in First-Line mHRPC

| RECIST<br>CRITERIA            | Arm A<br>(OGX-011 +<br>Docetaxel) n=26 | Arm B<br>(Docetaxel)<br>n=23 | % Change<br>in favor<br>of OGX-011 |
|-------------------------------|----------------------------------------|------------------------------|------------------------------------|
| Disease Control<br>(CR+PR+SD) | 92%                                    | 74%                          | 24%                                |
| Complete Response             | 0%                                     | 0%                           | N/A                                |
| Partial Response              | 19%                                    | 22%                          | -14%                               |
| Stable Disease                | 73%<br>9.7 months                      | 52%<br>7.6 months            | 40%<br>28%                         |
| Progressive Disease           | 4%                                     | 22%                          | 82%                                |
| Inevaluable                   | 4%                                     | 4%                           | N/A                                |
| Median PFS                    | 7.3 months                             | 5.9 months                   | 24%                                |

# NCIC IND.165: Taxotere +/- OGX-011 in First-Line mHRPC





Median for Arm A (OGX-011 + Docetaxel): 7.26 months (95%CI 5.22-9.33) Median for Arm B (Docetaxel): 5.85 months (95% CI 3.61-10.74)

Chi et al, ASCO, 2007

# NCIC IND.165: Taxotere +/- OGX-011 in First-Line mHRPC

## **Indicators of Anti-cancer Activity**

- Consistent trend in favor of OGX-011/docetaxel arm:
  - More patients with a 50% decline in PSA within the first 12 weeks
  - More pts (38% vs 22%) with >80% decline in PSA; less pts (0 vs 10%) with primary PSA progression as best response
  - Longer time on treatment and a greater median # of treatment cycles.
  - Higher frequency and longer duration of stable measurable disease.
  - Lower frequency of progressive disease as "best response".
  - Longer time to progression

## **OGX-011 in docetaxel-refractory HRPC:**

#### CLU knockdown chemosensitizes taxane-resistant PC3-dR cells to docetaxel



#### docetaxel +/- OGX-011





## Phase II Feasibility Trial of OGX-011 in 2nd Line Therapy in HRPC:



## **OGX-011 in 2nd Line Therapy in HRPC:**

#### Chemosensitizes taxane-resistant patients to docetaxel





Time (2 Weeks per mark)

# Summary: Clusterin as a Therapeutic Target in HRPC

sCLU is a stress-activated cytoprotective chaperone that is highly expressed in HRPC

#### Over-expression of sCLU-2 confers broad spectrum treatment resistance

- Inhibits protein aggregation, facilitates proteasome degration of ubiquitinated proteins
- Interacts and and inhibits activated Bax, preventing cytochrome C release
- Increases NF-kB transcriptional activity

#### CLU knockdown using OGX-011

- Enhances treatment-induced apoptosis in vitro and in vivo
- Pre-clinical proof-of-principle in prostate, breast, lung, urothelial, melanoma, renal cell
- OGX-011, a 2nd generation ASO potently suppresses target CLU levels >90% in human CaP tissues
  - Anti-cancer activity observed in multi-centre Phase II trials in breast, HRPC, lung
  - Phase III registration trial in second-line HRPC set to begin in 2008

# Changes in Gene Expression After Castration and During AI Progression



# Thanks to....



THE PROSTATE CENTRE at vancouver general hospital

# <u>PI's</u>

Kim Chi Larry Goldenberg Colleen Nelson Paul Rennie Alan So

### Pathology

Antonio Hurtado Ladan Fazli David Huntsman Torsten Neilsen Ted Jones

#### Post-docs

Hide Miyake Moto Muramaki

Sue Ettinger Amina Zoubeidi Eliana Beraldi Richard Sowery

OncoGenex Tech. Inc. Scott Cormack

**Isis Pharmaceuticals** 

Brett Monia

### **Collaborations**

UW - B. Vessella P. Lange, P Nelson, Tia Higano U Montreal - F. Saad

### **NCIC IND Group**

Elizabeth Eisenhauer Lesley Seymour

> Grant Funding NCIC NIH SPORE DoD PCF

# OGX-011: Safety Profile in >270 Patients

- Well tolerated in all Phase 1 and Phase 2 studies to date
- Safety profile of OGX-011 in combination with docetaxel vs docetaxel alone
  - Increase in Grade 1 or 2 AE's events (fever, rigors/chills and sweating during the loading-dose week and sensory neuropathy during therapy)
  - lymphopenia was more prevalent in the OGX-011 + docetaxel arm (no clinical sequelae)
  - No increase in SAEs in the OGX-011 + docetaxel arm
- OGX-011 in combination with gemcitabine/platinum-based or mitoxantrone regimens
  - Safety profile similar to that expected for regimen (no increase in expected rate of Grade 3 or higher AEs)

## **OGX-011 Mechanism of Action**



### **Clusterin: Isoforms and Splice Variants**



#### Cochrane et al, JBC, 2006