
# The Impact of Flaxseed on Prostate Cancer

Wendy Demark-Wahnefried, PhD, RD, LDN Professor: School of Nursing/Department of Surgery

Monetary Support: NIH/NCI R01 CA85740, M01-RR-30, & U10 CA074648 Flaxseed: Enreco, Inc

### What is Flaxseed?



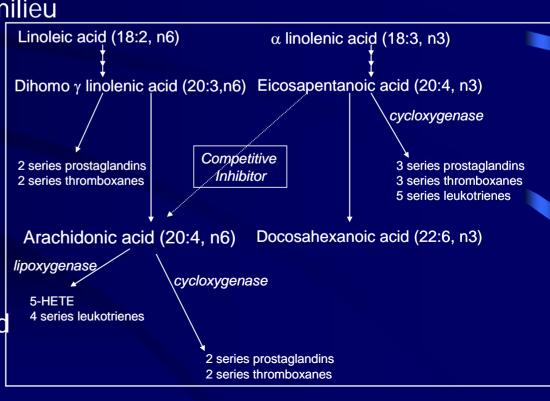
 Oilseed/grain consumed prevalently in the Middle Ages

### Why Flaxseed?

### Richest source of lignans (800x more than other foods)

- affects androgen metabolism (enterohepatic binding of testosterone, increases sex hormone binding globulin, reduces 5  $\alpha$  reductase)
- general antimitotic, antiangiogenic, antioxidant & estrogenic effects

### Richest source of plant-based omega-3 (ω-3) fatty acids


- inhibits cell membrane synthesis & alters cell membranes (receptors)
- inhibits protein kinase C/ tyrosine kinases
- increases natural killer cells
- affects the eicosanoid milieu

### Why a Low Fat Diet?

Reduce  $\omega$ -6 fatty acids

Previous studies suggest that low fat diets may hinder prostate cancer

Our pilot studies used flaxseed & a low fat diet together & had favorable effects



# Phase II Randomized Controlled Trial Flaxseed Supplementation &/or Dietary Fat Restriction in Men with Prostate Cancer Presurgery R01 CA85740



Consented - Collection of Baseline blood, urine, seminal fluid & survey data

161 Randomized

#### 929 Excluded

447 Ineligible

354 Refusals

108 No response

3 Unusable address

17 Other

Stratified on Gleason sum (<7 vs. 7+) & race (black vs. non-black)

### Control (n=41)

Usual diet

# Flaxseed Supplementation (n=40)

30 g. ground flaxseed/day

### Low Fat Diet (n=40)

<20% of energy from fat

#### Flaxseed + Low Fat (n=40)

30 g. ground flaxseed/day + <20% of energy from fat

#### 2 Lost-to-Follow-up

1 Lost-to-Follow-up

5 Lost-to-Follow-up

4 Lost-to-Follow-up

Before Surgery: Collection of blood, urine, seminal fluid & survey data

After Surgery: Collection of prostatic tissue

41 Included in Intention-to-Treat Analysis

40 Included in Intention-to-Treat Analysis

40 Included in Intention-to-Treat Analysis

40 Included in Intention-to-Treat Analysis

# **Eligibility Criteria**

- men with pathologically confirmed PC who elected prostatectomy as their primary treatment
- at least 21 days away from their scheduled surgery
- mentally-competent
- English-speaking and -writing
- telephone access
- Not routinely consuming flaxseed and/or a diet low in fat
- Antibiotic-use within the 21-day study period
- No neoadjuvant therapy
- No newly-started supplement-use (within 3 months) or planned supplement-use.

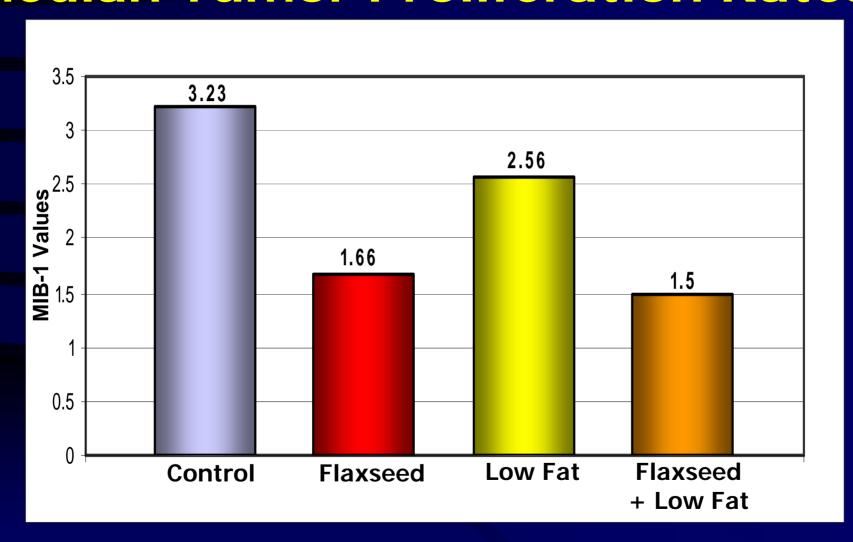
## **Measures & Measurement Points**

| Measures                                                                                                                                              | Baseline         | Study End        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| Histopathological Endpoints Proliferation Rate (MIB-1) PRIMARY ENDPOINT Apoptosis (TUNEL)                                                             | -                | X<br>X           |
| Serologic Endpoint (Total PSA)                                                                                                                        | X                | X                |
| Hormone-Related Mediators  Total Testosterone, Free Androgen Index (SHBG), IGF1, IGFBP3                                                               | X                | X                |
| Nutritional Biomarkers Lignans in Ejaculate (controlled for zinc) Urinary Lignans Erythrocyte Fatty Acid Profiles Prostate Tissue Fatty Acid Profiles | X<br>X<br>X<br>- | X<br>X<br>X<br>- |
| Other Endpts, Markers of Adherance, Confounders Total and LDL Cholesterol Food Frequency (DHQ) Physical Activity (Cooper Questionnaire) Body Weight   | X<br>X<br>X      | X<br>X<br>X<br>X |
| Side Effects (CALGB Toxicity Index)                                                                                                                   | -                | X                |

### Characteristics of the study sample (n=161)

|                           |                                           | Total      |
|---------------------------|-------------------------------------------|------------|
| Age (years)               | Mean (sd)                                 | 59.2 (7.3) |
|                           | Range                                     | 36-73      |
| Race % (N)                | White                                     | 70%        |
| A                         | African American                          | 26%        |
|                           | Other                                     | 4%         |
| Education % (N)           | <high school<="" td=""><td>9%</td></high> | 9%         |
| High School Grad/GED      |                                           | 20%        |
| Some College/Trade        |                                           | 29%        |
| College Grad/Post-grad    |                                           | 42%        |
| <b>Biopsy Gleason Sum</b> | <7                                        | 68%        |
|                           | 7+                                        | 32%        |

# Days on Protocol, Side Effects & Self-Rated Adherence


|                          | Control | Flaxseed | Low Fat | FS + LF |  |
|--------------------------|---------|----------|---------|---------|--|
|                          | (n=41)  | (n=40)   | (n=40)  | (n=40)  |  |
| # of Days on<br>Protocol | 30      | 31       | 31      | 30      |  |
| Days/Week<br>Adherent    | -       | 6.9      | 6.5     | 6.8/6.3 |  |
| Side Effects             |         |          |         |         |  |
| (% grades (1/2/3)        | 7/0/0   | 5/0/0    | 21/2/0  | 8/0/0   |  |
| nausea                   | 0/0/0   | 0/0/0    | 0/0/0   | 0/0/0   |  |
| vomiting<br>diarrhea     | 5/2/0   | 17/0/0   | 0/0/0   | 13/0/0  |  |
| impotence                | 15/5/10 | 8/2/7    | 24/0/5  | 11/3/8  |  |
| allergy                  | 0/2/0   | 0/0/0    | 0/0/0   | 0/1/0   |  |

No significant differences between arms for all measures

# Change Scores for Nutrient Intake & Nutritional Biomarkers

|                                          | Control | Flaxseed | Low Fat | FS + LF | P-values |       |
|------------------------------------------|---------|----------|---------|---------|----------|-------|
|                                          | (n=41)  | (n=40)   | (n=40)  | (n=40)  | FS       | LF    |
| Dietary Lignan μg/day ∆                  | +3.8    | +258129  | +9.5    | +253152 | <.0001   | NS    |
| Urinary Lignan<br>(ng/mg creatinine) – ∆ | +78     | +18467   | +230    | +13267  | <.0001   | NS    |
| Seminal Fluid Lignan<br>(μg/ml)–∆        | +93     | +198     | -2      | +237    | .013     | NS    |
| % Dietary Fat – ∆                        | -1%     | -1%      | -8%     | -10%    | NS       | .0001 |
| Diet ALA (mg/day)–∆                      | +0.2    | +31      | -1      | +35     | <.0001   | NS    |
| Diet EPA (mg/day) – $\Delta$             | 0       | 0        | +0.1    | +0.2    | NS       | .003  |
| Diet $\omega 3/\omega 6 - \Delta$        | 0       | +.43     | +.01    | +.62    | <.0001   | NS    |
| Prostatic ALA (% FA)                     | .07     | .36      | .07     | .09     | NS       | NS    |
| Prostatic EPA (% FA)                     | .27     | .32      | .22     | .37     | .01      | NS    |
| Prostatic ω3/ω6                          | .44     | .91      | .50     | .78     | .0001    | NS    |

## Primary Endpoint: Median Tumor Proliferation Rates



Wilcoxon 2-sided p=0.0013 for flaxseed/p=0.53 for low fat

# **Other Outcomes**

|                                | Control Flaxseed |        | Flaxseed Low Fat FS+ |        | P-va | alues |
|--------------------------------|------------------|--------|----------------------|--------|------|-------|
|                                | (n=41)           | (n=40) | (n=40)               | (n=40) | FS   | LF    |
| Apoptosis (TUNEL) 0            | 84%              | 74%    | 74%                  | 89%    | NS   | NS    |
| > 0-1                          | 13%              | 16%    | 14%                  | 3%     |      |       |
| > 1-2                          | 3%               | 10%    | 12%                  | 8%     |      |       |
| PSA (ng/ml) - $\Delta$         | -0.61            | -0.07  | -0.30                | -0.18  | NS   | NS    |
| Testosterone (ng/dL)- $\Delta$ | -48              | -39    | -52                  | -8     | NS   | NS    |
| SHBG (nmol/L)                  | -1.9             | -1.6   | -0.2                 | +0.8   | NS   | NS    |
| Free Androgen Index            | -0.7             | -0.3   | -1.8                 | -0.7   | NS   | NS    |
| IGF-1 (ng/ml)                  | -6               | -7     | -3                   | -1     | NS   | NS    |
| IGFBP-3 (mg/L)                 | -0.3             | -0.3   | -0.4                 | -0.3   | NS   | NS    |
| Cholesterol (mg/dL)            | +9               | -26    | -46                  | -37    | NS   | .048  |
| CRP(mg/L)                      | +2.3             | +4.8   | +0.9                 | -0.2   | NS   | NS    |

### Conclusions

- Both the low fat diet & flaxseed supplementation were well-accepted & well-tolerated.
- Prostate cancer proliferation rates were significant lower in men assigned to flaxseed supplementation.
- Other biomarkers associated with prostate cancer (apoptosis, androgen metabolism, IGF-1/IGFBP-3) were not significantly affected.
- Serum cholesterol was significantly reduced in men assigned to the low fat diet.
- Further study is needed to...
  - validate findings using the presurgical model
  - determine effects using other models, e.g. after biochemical failure
  - disentangle potential synergies between the low fat diet & flaxseed supplementation and if effects are due to lignan or to fat
  - determine potential mechanisms

## Thanks to....

### **Co-Investigators**

- Robin Vollmer, MD, MPH
- John Madden, MD, PhD
- Stephen George, PhD
- Boyd Switzer, PhD
- Thomas Polascik, MD
- David Albala, MD
- Philip Walther, MD, PhD
- Cary Robertson, MD
- Judd Moul, MD
- Xu Lin, MD, PhD
- Mack Ruffin, IV, MD
- Dean Brenner, MD
- Barbara Dunn, MD
- Lori Minisian, MD
- Philip Stella, MD
- Denise Snyder, MS, RD
- Vera Hars, MS

### <u>Others</u>

- David Paulson, MD
- Kuravilla Kurian, MD
- Everett Anderson, MD
- Brian Murphy, MD
- Regina Norris, MD
- Philipp Dahm, PhD
- Kristy McKiernan-Borawski, MD
- Brian Evans, MD
- Nicholas Fitzsimons, MD
- Charles Marguet, MD
- Charles Scales, MD
- Timothy Tseng, MD
- Jeremy Wiygul, MD
- Alister Muir, PhD

- Mary Jo Beck
- Jennifer Blevins
- Martha Boggs
- Virginia Bolin
- Luellen Bratt
- Linda Hofbauer
- Rita Joost
- Beth Lavasseur
- Deborah Lee
- Peggy McGraw
- Mary Beth Reardon
- Allana Richmond
- Courtney Streeter
- Valeda Stull

And to the many men & their families who participated in this trial